Смешной случай из жизни. Вставьте в текст «Темновая Благодаря солнечной энергии происходит возбуждение молекул

Вставьте в текст пропущенные имена учёных
Причастность микробов к инфекционным заболеваниям была доказана____ Фагоцитоз как средство борьбы с микробами был открыт____ Первую противооспенную вакцину предложил _____ Изобретении метода получение вакцин и лечебных сывороток против различных инфекционных заболеваний принадлежит _____

Вставьте в текст «Пищеварение у плоских червей» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите в

текст цифры ПИЩЕВАРЕНИЕ У ПЛОСКИХ ЧЕРВЕЙ

Вставьте в текст «Системы органов» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите в текст цифры

выбранных ответов, а затем получившуюся последовательность цифр (по тексту) впишите в приведённую ниже таблицу.

СИСТЕМЫ ОРГАНОВ

Орган – это ___________ (А), имеющая определённую форму, строение, место и выполняющая одну или несколько функций. В каждом органе обязательно есть кровеносные сосуды и ___________ (Б). Органы, совместно выполняющие общие функции, составляют системы органов. В организме человека имеется выделительная система, главным органом которой являются ___________ (В). Через выделительную систему во внешнюю среду удаляются вредные ___________ (Г).

ПЕРЕЧЕНЬ ТЕРМИНОВ: 1) ткань 2) часть тела 3) нервы 4) кишечник 5) желудок 6) почки 7) продукт обмена 8) непереваренные остатки пищи

Вставьте в текст «Испарение воды листом» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите в текст цифры

выбранных ответов, а затем получившуюся последовательность цифр (по тексту) впишите в приведённую ниже таблицу.

ИСПАРЕНИЕ ВОДЫ ЛИСТОМ

Поглощённый ___________ (А) почвенный раствор, состоящий из воды и минеральных веществ, по особым клеткам – ___________ (Б) – поступает в лист. Здесь часть воды используется в процессе фотосинтеза, а часть, перейдя в газообразное состояние, испаряется через ___________ (В). Этот процесс имеет название ___________ (Г). Минеральные соли остаются в листьях, накапливаются и вызывают ежегодное отмирание листьев – листопад.

ПЕРЕЧЕНЬ ТЕРМИНОВ:

2) ситовидная трубка

4) стебель

5) транспирация

6) устьица

7) фотосинтез

8) чечевичка

Вставьте в текст «Обмен белков» пропущенные термины из предложенного

перечня, используя для этого цифровые обозначения. Запишите в текст
цифры выбранных ответов, а затем получившуюся последовательность цифр
(по тексту) впишите в приведённую ниже таблицу.
ОБМЕН БЕЛКОВ
Ферментативное расщепление поступающих с пищей белков происходит
в желудке и тонком кишечнике. Образовавшиеся ___________ (А) активно
всасываются в ворсинки кишки, поступают в ___________ (Б) и разносятся
ко всем клеткам организма. В клетках с поступившими веществами
происходит два процесса: ___________ (В) новых белков на рибосомах и
окончательное окисление до аммиака, который превращается в
___________ (Г) и в таком состоянии выводится из организма.
ПЕРЕЧЕНЬ ТЕРМИНОВ:
1)
кровь
2)
глицерин
3)
аминокислота
4)
лимфа
5)
синтез
6)
мочевина
7)
распад
8)
глюкоза

В настоящее время установлено, что фотосинтез протекает в две стадии: световую и темновую. Световая стадия – это процесс использования света для расщепления воды; при этом выделяется кислород и образуются богатые энергией соединения.

Темновая стадия включает группу реакций, в которых используются высокоэнергетические продукты световой стадии для восстановления СО 2 до простого сахара, т.е. для ассимиляции углерода. Поэтому темновую стадию называют также стадией синтеза. Термин «темновая стадия» означает лишь то, что свет в ней непосредственно не участвует. Современные представления о механизме фотосинтеза сформировались на основе исследований, проведенных в 1930–1950-х годах. До этого на протяжении многих лет ученых вводила в заблуждение на первый взгляд простая, однако неверная гипотеза, согласно которой О 2 образуется из СО 2 , а освободившийся углерод реагирует с Н 2 О, в результате чего и образуются углеводы. В 1930-х годах, когда выяснилось, что у некоторых серных бактерий кислород при фотосинтезе не выделяется, биохимик К. ван Ниль предположил, что кислород, выделяющийся в процессе фотосинтеза у зеленых растений, происходит из воды. У серных бактерий реакция протекает следующим образом:

Вместо О 2 эти организмы образуют серу. Ван Ниль пришел к заключению, что все виды фотосинтеза можно описать уравнением

где Х – кислород в фотосинтезе, идущем с выделением О 2 , и сера в фотосинтезе серных бактерий. Ван Ниль также предположил, что этот процесс включает две стадии: световую и стадию синтеза.

Эту гипотезу подкрепило открытие физиолога Р.Хилла. Он обнаружил, что разрушенные или частично инактивированные клетки способны на свету осуществлять реакцию, в которой кислород выделяется, но СО 2 не восстанавливается (ее назвали реакцией Хилла). Чтобы эта реакция могла идти, требовалось добавить какой-нибудь окислитель, способный присоединять электроны или водородные атомы, отдаваемые кислородом воды. Один из реагентов Хилла – это хинон, который, присоединив два атома водорода, превращается в дигидрохинон. Другие реагенты Хилла содержали трехвалентное железо (ион Fe 3+ ), которое, присоединив один электрон от кислорода воды, превращалось в двухвалентное ( Fe 2+ ). Так было показано, что переход водородных атомов от кислорода воды на углерод может совершаться в форме независимого движения электронов и ионов водорода. В настоящее время установлено, что для запасания энергии важен именно переход электронов от одного атома к другому, тогда как ионы водорода могут переходить в водный раствор, а при необходимости вновь из него извлекаться. Реакция Хилла, в которой световая энергия используется для того, чтобы вызвать перенос электронов от кислорода на окислитель (акцептор электронов), была первой демонстрацией перехода световой энергии в химическую и моделью световой стадии фотосинтеза.

Гипотеза, согласно которой кислород во время фотосинтеза непрерывно поступает от воды, нашла дальнейшее подтверждение в опытах с применением воды, меченной тяжелым изотопом кислорода ( 18 О). Поскольку изотопы кислорода (обычный 16 О и тяжелый 18 О) по своим химическим свойствам одинаковы, растения используют Н 2 18 О точно так же, как Н 2 16 О. Оказалось, что в выделенном кислороде присутствует 18 О. В другом опыте растения вели фотосинтез с Н 2 16 О и С 18 О 2 . При этом выделяемый в начале эксперимента кислород не содержал 18 О.

В 1950-х годах физиолог растений Д.Арнон и другие исследователи доказали, что фотосинтез включает световую и темновую стадии. Из растительных клеток были получены препараты, способные осуществлять всю световую стадию. Используя их, удалось установить, что на свету происходит перенос электронов от воды к фотосинтетическому окислителю, который в результате этого становится донором электронов для восстановления диоксида углерода на следующей стадии фотосинтеза. Переносчиком электронов служит никотинамидадениндинуклеотидфосфат. Его окисленную форму обозначают НАДФ + , а восстановленную (образующуюся после присоединения двух электронов и иона водорода) – НАДФ Ч Н. В НАДФ + атом азота пятивалентный (четыре связи и один положительный заряд), а в НАДФ Ч Н – трехвалентный (три связи). НАДФ + принадлежит к т.н. коферментам. Коферменты совместно с ферментами осуществляют многие химические реакции в живых системах, но в отличие от ферментов в ходе реакции изменяются. Б льшая часть преобразованной световой энергии, запасаемой в световой стадии фотосинтеза, запасается при переносе электронов от воды к НАДФ + .

Образовавшийся НАДФ Ч Н удерживает электроны не столь прочно, как кислород воды, и может отдавать их в процессах синтеза органических соединений, расходуя накопленную энергию на полезную химическую работу. Значительное количество энергии запасается еще и другим способом, а именно в форме АТФ (аденозинтрифосфата). Он образуется в результате отнятия воды от неорганического иона фосфата ( HPO 4 2– ) и органического фосфата, аденозиндифосфата (АДФ), согласно следующему уравнению:


АТФ – богатое энергией соединение, и для его образования необходимо поступление энергии от какого-то источника. В обратной реакции, т.е. при расщеплении АТФ на АДФ и фосфат, энергия высвобождается. Во многих случаях АТФ отдает свою энергию другим химическим соединениям в реакции, в которой водород замещается на фосфат. В представленной ниже реакции сахар ( ROH ) фосфорилируется, превращаясь в сахарофосфат:


В сахарофосфате заключено больше энергии, чем в нефосфорилированном сахаре, поэтому его реакционная способность выше.

АТФ и НАДФ Ч Н, образующиеся (наряду с О 2 ) в световой стадии фотосинтеза, используются затем на стадии синтеза углеводов и других органических соединений из диоксида углерода.

Биология [Полный справочник для подготовки к ЕГЭ] Лернер Георгий Исаакович

2.5.3. Фотосинтез и хемосинтез

Все живые существа нуждаются в пище и питательных веществах. Питаясь, они используют энергию, запасенную, прежде всего, в органических соединениях – белках, жирах, углеводах. Гетеротрофные организмы, как уже говорилось, используют пищу растительного и животного происхождения, уже содержащую органические соединения. Растения же создают органические вещества в процессе фотосинтеза. Исследования в области фотосинтеза начались в 1630 г. экспериментами голландца ван Гельмонта. Он доказал, что растения получают органические вещества не из почвы, а создают их самостоятельно. Джозеф Пристли в 1771 г. доказал «исправление» воздуха растениями. Помещенные под стеклянный колпак они поглощали углекислый газ, выделяемый тлеющей лучиной. Исследования продолжались, и в настоящее время установлено, что фотосинтез – это процесс образования органических соединений из диоксида углерода (СО 2) и воды с использованием энергии света и проходящий в хлоропластах зеленых растений и зеленых пигментах некоторых фотосинтезирующих бактерий.

Хлоропласты и складки цитоплазматической мембраны прокариот содержат зеленый пигмент – хлорофилл . Молекула хлорофилла способна возбуждаться под действием солнечного света и отдавать свои электроны и перемещать их на более высокие энергетические уровни. Этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет ее. Электроны не падают обратно, а подхватываются переносчиками электронов (НАДФ + – никотинамиддифосфат ). При этом энергия, накопленная ими ранее, частично расходуется на образование АТФ. Продолжая сравнение с подброшенным мячом, можно сказать, что мяч, падая, нагревает окружающее пространство, а часть энергии падающих электронов запасается в виде АТФ. Процесс фотосинтеза подразделяется на реакции, вызываемые светом, и реакции, связанные с фиксацией углерода. Их называют световой и темновой фазами.

«Световая фаза» – это этап, на котором энергия света, поглощенная хлорофиллом, преобразуется в электрохимическую энергию в цепи переноса электронов. Осуществляется на свету, в мембранах гран при участии белков – переносчиков и АТФ-синтетазы.

Реакции, вызываемые светом, происходят на фотосинтетических мембранах гран хлоропластов:

1) возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень;

2) восстановление акцепторов электронов – НАДФ + до НАДФ Н

2Н + + 4е - + НАДФ + ? НАДФ Н;

3) фотолиз воды , происходящий при участии квантов света: 2Н 2 О? 4Н + + 4е - + О 2 .

Данный процесс происходит внутри тилакоидов – складках внутренней мембраны хлоропластов. Из тилакоидов формируются граны – стопки мембран.

Так как в экзаменационных работах спрашивают не о механизмах фотосинтеза, а о результатах этого процесса, то мы и перейдем к ним.

Результатами световых реакций являются: фотолиз воды с образованием свободного кислорода, синтез АТФ, восстановление НАДФ+ до НАДФ Н. Таким образом свет нужен только для синтеза АТФ и НАДФ-Н.

«Темновая фаза» – процесс преобразования СО 2 в глюкозу в строме (пространстве между гранами) хлоропластов с использованием энергии АТФ и НАДФ Н.

Результатом темновых реакций являются превращения углекислого газа в глюкозу, а затем в крахмал. Помимо молекул глюкозы в строме происходит образование, аминокислот, нуклеотидов, спиртов.

Суммарное уравнение фотосинтеза -

Значение фотосинтеза . В процессе фотосинтеза образуется свободный кислород, который необходим для дыхания организмов:

кислородом образован защитный озоновый экран, предохраняющий организмы от вредного воздействия ультрафиолетового излучения;

фотосинтез обеспечивает производство исходных органических веществ, а следовательно, пищу для всех живых существ;

фотосинтез способствует снижению концентрации диоксида углерода в атмосфере.

Хемосинтез – образование органических соединений из неорганических за счет энергии окислительно-восстановительных реакций соединений азота, железа, серы. Существует несколько видов хемосинтетических реакций:

1) окисление аммиака до азотистой и азотной кислоты нитрифицирующими бактериями:

NH 3 ? HNQ 2 ? HNO 3 + Q;

2)превращение двухвалентного железа в трехвалентное железобактериями:

Fe 2+ ? Fe 3+ + Q;

3)окисление сероводорода до серы или серной кислоты серобактериями

H 2 S + O 2 = 2H 2 O + 2S + Q,

H 2 S + O 2 = 2H 2 SO 4 + Q.

Выделяемая энергия используется для синтеза органических веществ.

Роль хемосинтеза. Бактерии – хемосинтетики, разрушают горные породы, очищают сточные воды, участвуют в образовании полезных ископаемых.

ПРИМЕРЫ ЗАДАНИЙ

А1. Фотосинтез – это процесс, происходящий в зеленых растениях. Он связан с:

1) расщеплением органических веществ до неорганических

2) созданием органических веществ из неорганических

3) химическим превращения глюкозы в крахмал

4) образованием целлюлозы

А2. Исходным материалом для фотосинтеза служат

1) белки и углеводы 3) кислород и АТФ

2) углекислый газ и вода 4) глюкоза и кислород

А3. Световая фаза фотосинтеза происходит

1) в гранах хлоропластов 3) в строме хлоропластов

2) в лейкопластах 4) в митохондриях

А4. Энергия возбужденных электронов в световой стадии используется для:

1) синтеза АТФ 3) синтеза белков

2) синтеза глюкозы 4) расщепления углеводов

А5. В результате фотосинтеза в хлоропластах образуются:

1) углекислый газ и кислород

2) глюкоза, АТФ и кислород

3) белки, жиры, углеводы

4) углекислый газ, АТФ и вода

А6. К хемотрофным организмам относятся

1) возбудители туберкулеза

2) молочнокислые бактерии

3) серобактерии

Часть В

В1. Выберите процессы, происходящие в световой фазе фотосинтеза

1) фотолиз воды

2) образование глюкозы

3) синтез АТФ и НАДФ Н

4) использование СО 2

5) образование свободного кислорода

6) использование энергии АТФ

В2. Выберите вещества, участвующие в процессе фотосинтеза

целлюлоза 4) углекислый газ

гликоген 5) вода

хлорофилл 6) нуклеиновые кислоты

Часть С

С1. Какие условия необходимы для начала процесса фотосинтеза?

С2. Как строение листа обеспечивает его фотосинтезирующие функции?

Из книги 100 великих научных открытий автора Самин Дмитрий

ФОТОСИНТЕЗ Несколько лет французские химики Пельтье (1788–1842) и Каванту (1795–1877) работали вместе. Это плодотворное сотрудничество привело к открытию стрихнина и бруцина. Самую большую славу принесло им открытие хинина - верного средства против малярии. В 1817 году ученые

Из книги Большая Советская Энциклопедия (ФО) автора БСЭ

Из книги Большая Советская Энциклопедия (ХЕ) автора БСЭ

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Что такое фотосинтез и какое значение он имеет для жизни на Земле? Фотосинтезом называют образование высшими растениями, водорослями, фотосинтезирующими бактериями сложных органических веществ, необходимых для жизнедеятельности как самих растений, так и всех других

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

2.5. Метаболизм: энергетический и пластический обмен, их взаимосвязь. Ферменты, их химическая природа, роль в метаболизме. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович