Как определяется относительная погрешность косвенных измерений. Определение погрешности косвенного измерения. Методические указания по определению погрешностей при измерениях в лабораторном практикуме по физике

Чтобы понять основной принцип оценки погрешностей косвенных измерений, следует проанализировать источник этих погрешностей.

Пусть физическая величина Y есть функция непосредственно измеряемой величины х ,
Y = f(x).

Величина х имеет погрешность Dх . Именно эта погрешность Dх - неточность в определении аргумента x является источником погрешности физической величины Y , являющейся функцией f (x ).

Приращение Dх аргумента х определяет собой приращение функции .

Погрешность аргумента Dх косвенно определяемой физической величины Y определяет собой погрешность , где Dх - погрешность физической величины, найденной в прямых измерениях.

Если физическая величина является функцией нескольких непосредственно
измеряемых величин , то, проводя аналогичные рассуждения для каждого аргумента xi , получим:

Очевидно, что погрешность, рассчитанная по этой формуле, является максимальной и соответствует ситуации, когда все аргументы изучаемой функции имеют одновременно максимальное отклонение от своих средних значений. На практике такие ситуации маловероятны и реализуются крайне редко, поэтому следует рассчитывать
погрешность результата косвенных измерений .
(Эта формула доказывается в теории ошибок .)
В реальных измерениях относительная точность различных величин х i может сильно отличаться. При этом, если для одной из величин xm выполняется неравенство , где i =1,…, m -1, m +1,…, n , то можно считать, что погрешность косвенно определенной величины DY определяется погрешностью Dxm :

Пример.
При измерении скорости V полета пули методом вращающихся дисков, скорость пули V =360lN / j есть результат косвенных измерений, где l - расстояние между дисками, , N - число оборотов в единицу времени, известное с точностью , j - угол поворота измеренный в градусах , следовательно, для углов поворота j £ 70о определяющим точность фактором будет погрешность угла поворота дисков.

Итак, при вычислении погрешности косвенно определяемой физической величины надо прежде всего выявить наименее точно определенную в прямых измерениях величину и, если , считать , пренебрегая погрешностями остальных х i i ¹ m .

Рассмотрим наиболее распространенные случаи взаимосвязи физических величин.

В данном случае проще сначала вычислить относительную погрешность .

Это выражение дает завышенную погрешность. Более точная формула полученная из теории ошибок имеет вид: .

Переходя от дифференциалов к конечным приращениям, имеем:
.
В этом случае абсолютная погрешность DY пропорциональна относительной погрешности непосредственно измеряемой величины x . Если Dx = const , то с ростом х DY будет уменьшаться (вот почему графики логарифмических зависимостей как правило отличаются неравновеликими погрешностями DY ).
Пример.

При определении тройной точки нафталина необходимо построить зависимость ln P от обратной температуры, где Р давление в мм ртутного столба, определенное с точностью до 1 мм рт. ст.

Рис 1.
Итак, для логарифмических функций вида Y = A logax проще сразу вычислять абсолютную погрешность, которая пропорциональна относительной погрешности переменной x:

Формулы вычисления погрешностей косвенных измерений основаны на представлениях дифференциального исчисления.

Пусть зависимость величины Y от измеряемой величины Z имеет простой вид: .

Здесь и - постоянные, значения которых известны. Если z увеличить или уменьшить на некоторое число , то соответственно изменится на :

Если - погрешность измеренной величины Z , то соответственно будет погрешностью вычисляемой величины Y .

Получим формулу абсолютной погрешности в общем случае функции одной переменной . Пусть график этой функции имеет вид, показанный на рис.1. Точному значению аргумента z 0 соответствует точное значение функцииy 0 = f(z 0).

Измеренное значение аргумента отличается от точного значения аргумента на величину Δz вследствие ошибок измерений. Значение функции будет отличаться от точного на величину Δy.

Из геометрического смысла производной как тангенса угла наклона касательной к кривой в данной точке (рис. 1) следует:

. (10)

Формула для относительной погрешности косвенного измерения в случае функции одной переменной будет иметь вид:
. (11)

Учитывая, что дифференциал функции равен , получим

(12)

Если косвенное измерение представляет собой функцию m переменных , то погрешность косвенного измерения будет зависеть от погрешностей прямых измерений . Частную погрешность, связанную с ошибкой измерения аргумента , обозначим . Она составляет приращение функции за счет приращения при условии, что все остальные аргументы неизменны. Таким образом, частную абсолютную погрешность запишем согласно (10) в следующем виде:

(13)

Таким образом, чтобы найти частную погрешность косвенного измерения , надо, согласно (13), частную производную умножить на погрешность прямого измерения . При вычислении частной производной функции по остальные аргументы считаются постоянными.

Результирующая абсолютная погрешность косвенного измерения определяется по формуле, в которую входят квадраты частных погрешностей

косвенного измерения :



или с учетом (13)

(14)

Относительная погрешность косвенного измерения определяется по формуле:

Или с учетом (11) и (12)

. (15)

Пользуясь (14) и (15), находят одну из погрешностей, абсолютную или относительную, в зависимости от удобства вычислений. Так, например, если рабочая формула имеет вид произведения, отношения измеряемых величин, ее легко логарифмировать и по формуле (15) определить относительную погрешность косвенного измерения. Затем абсолютную погрешность вычислить по формуле (16):

Для иллюстрации вышеизложенного порядка определения погрешности косвенных измерений вернемся к виртуальной лабораторной работе «Определение ускорения свободного падения при помощи математического маятника».

Рабочая формула (1) имеет вид отношения измеряемых величин:

Поэтому начнем с определения относительной погрешности. Для этого прологарифмируем данное выражение, а затем вычислим частные производные:

; ; .

Подстановка в формулу (15) приводит к формуле относительной погрешности косвенного измерения:

(17)

После подстановка результатов прямых измерений

{ ; } в (17) получаем:

(18)

Для вычисления абсолютной погрешности используем выражение (16) и ранее вычисленное значение (9) ускорения свободного падения g :

Результат вычисления абсолютной погрешности округляем до одной значащей цифры. Вычисленное значение абсолютной погрешности определяет точность записи окончательного результата:

, α ≈ 1. (19)

При этом доверительная вероятность определяется доверительной вероятностью тех из прямых измерений, которые внесли решающий вклад в погрешность косвенного измерения. В данном случае это измерения периода.

Таким образом, с вероятностью близкой к 1 величина g лежит в пределах от 8 до 12 .

Для получения более точного значения ускорения свободного падения g необходимо совершенствовать методику измерений. С этой целью надо уменьшить относительную погрешность , которая в основном, как следует из формулы (18), определяется погрешностью измерения времени.

Для этого надо измерять время не одного полного колебания, а, например, 10-ти полных колебаний. Тогда, как следует из (2), формула относительной погрешности примет вид:

. (20)

В табл.4 представлены результаты измерения времени для N = 10

Для величины L возьмем результаты измерений из табл.2. Подставляя результаты прямых измерений в формулу (20), найдем относительную погрешность косвенного измерения:

По формуле (2) вычислим значение косвенно измеряемой величины:

.

.

Окончательный результат записывается в виде:

; ; .

В этом примере показана роль формулы относительной погрешности в анализе возможных направлений совершенствования методики измерений.

Рассмотрим сначала случай, когда величина у зависит только от одной переменной х , которая находится прямым измерением,

Среднее арифметическое <y > можно найти, подставив в (8) вместо х среднее арифметическое <х >.

.

Абсолютную погрешность можно рассматривать как приращение функции (8) при приращении аргумента ∆х (полная погрешность измеряемой величины х ). При малых значениях ∆х она приближенно равна дифференциалу функции

, (9)

где - производная функции, вычисленная при . Относительная погрешность будет равна

.

Пусть определяемая величина у является функцией нескольких переменных х i ,

. (10)

Предполагается, что погрешности всех величин в рабочей формуле носят случайный характер, независимы и рассчитаны с одной и той же доверительной вероятностью (например Р = 0,95). Такую же доверительную вероятность будет иметь и погрешность искомой величины. В этом случае наиболее вероятное значение величины <у > определяют по формуле (10), используя для расчета наиболее вероятные значения величин х i , т. е. их средние значения:

<у > = f (<x 1 >, <x 2 >, …,<x i >, …,<x m >).

В этом случае абсолютная погрешность окончательного результата Δу определяется по формуле

, (11)

где ∂у /∂х i – частные производные функции у по аргументам х i , вычисленные для наиболее вероятных значений величин х i . Частная производная – это производная, которая вычисляется от функции у по аргументу х i при условии, что все остальные аргументы считаются постоянными.

Относительную погрешность величины у получим, поделив ∆у на <у>

. (12)

Принимая во внимание, что (1/у ) dy/dx представляет производную по х от натурального логарифма у относительную погрешность можно записать так

. (13)

Формулу (12) удобнее использовать в тех случаях, когда в зависимости (10) измеряемые величины х i входят, в основном, в виде слагаемых, а формула (13) является удобной для расчетов тогда, когда (10) представляет собой произведения величин х i . В последнем случае предварительное логарифмирование выражения (10) существенно упрощает вид частных производных. Измеряемая величина у является величиной размерной и логарифмировать размерную величину нельзя. Чтобы устранить эту некорректность, нужно разделить у на постоянную, имеющую данную размерность. После логарифмирования получится дополнительное слагаемое, которое не зависит от величин х i и поэтому исчезнет при взятии частных производных, так как производная от постоянной величины равна нулю. Поэтому при логарифмировании наличие такого слагаемого просто подразумевается.



Учитывая простую связь между абсолютной и относительной погрешностями ε у = Δу /<у >, легко по известной величине Δу вычислить ε у и наоборот.

Функциональная связь между погрешностями прямых измерений и погрешностью косвенного измерения для некоторых простых случаев приведена в табл. 3.

Рассмотрим некоторые особые случаи, возникающие при вычислении погрешностей измерений. Приведенные выше формулы для расчета погрешностей косвенных измерений справедливы только тогда, когда все х i независимые величины и измерены различными приборами и методами. На практике это условие не всегда соблюдается. Например, если какие-либо физические величины в зависимости (10) измеряются одним и тем же прибором, то приборные погрешности Δх i пр этих величин уже не будут независимыми, и приборная погрешность косвенно измеряемой величины Δу пр в этом случае будет несколько больше, чем при «квадратичном суммировании». Например, если площадь пластины длиной l и шириной b измерены одним штангенциркулем, то относительная приборная погрешность косвенного измерения будет

(ΔS/S ) пр = (Δl /l ) пр + (Δb/b ) пр,

т.е. погрешности суммируются арифметически (погрешности Δl пр и Δb пр одного знака и их величины одинаковы), вместо относительной приборной погрешности

при независимых погрешностях.

Таблица 3

Функциональная связь погрешностей прямых и косвенных измерений

Рабочая формула Формула для расчета погрешности

При проведении измерений возможны случаи, когда величины х i имеют разные значения, специально изменяемые или задаваемые во время эксперимента, например, вязкость жидкости по методу Пуазейля определяют для разной высоты столба жидкости над капилляром, или ускорение свободного падения g определяют с помощью математического маятника для разных длин). В таких случаях следует вычислять значение косвенно измеряемой величины у в каждом из n опытов по отдельности, а в качестве наиболее вероятного значения ее брать среднее значение, т.е. . Случайная погрешность Δу сл вычисляется как погрешность при прямом измерении. Вычисление приборной погрешности Δу пр производится через частные производные по формуле (11), а окончательная полная погрешность косвенно измеряемой величины подсчитывается по формуле

В большинстве случаев конечной целью лабораторной работы является вычисление искомой величины с помощью некоторой формулы, в которую входят величины, измеряемые прямым путем. Такие измерения называются косвенными. В качестве примера приведем формулу плотности твердого тела цилиндрической формы

где r – плотность тела, m – масса тела, d – диаметр цилиндра, h – его высота.

Зависимость (П.5) в общем виде можно представить следующим образом:

где Y – косвенно измеряемая величина, в формуле (П.5) это плотность r; X 1 , X 2 ,... , X n – прямо измеряемые величины, в формуле (П.5) это m , d , и h .

Результат косвенного измерения не может быть точным, поскольку результаты прямых измерений величин X 1 , X 2 , ... , X n всегда содержат в себе погрешность. Поэтому при косвенных измерениях, как и при прямых, необходимо оценить доверительный интервал (абсолютную погрешность)полученного значения DY и относительную погрешность e.

При расчете погрешностей в случае косвенных измерений удобно придерживаться такой последовательности действий:

1) получить средние значения каждой прямо измеряемой величины áX 1 ñ, áX 2 ñ, …, áX n ñ;

2) получить среднее значение косвенно измеряемой величины áY ñ, подставив вформулу (П.6) средние значения прямо измеряемых величин;

3) провести оценки абсолютных погрешностей прямо измеряемых величин DX 1 , DX 2 , ..., DX n , воспользовавшись формулами (П.2) и (П.3);

4) основываясь на явном виде функции (П.6), получить формулу для расчета абсолютной погрешности косвенно измеряемой величины DY и рассчитать ее;

6) записать результат измерения с учетом погрешности.

Ниже без вывода приводится формула, позволяющая получить формулы для расчета абсолютной погрешности, если известен явный вид функции (П.6):

где ¶Y¤¶X 1 и т. д. – частные производные от Y по всем прямо измеряемым величинам X 1 , X 2 , …, X n (когда берется частная производная, например по X 1 , то все остальные величины X i в формуле считаются постоянными), DX i – абсолютные погрешности прямо измеряемых величин, вычисленные согласно (П.3).

Рассчитав DY, находят относительную погрешность .

Однако если функция (П.6) является одночленом, то намного легче сначала рассчитать относительную погрешность, а затем уже абсолютную.

Действительно, разделив обе части равенства (П.7) на Y , получим

Но так как , то можно записать

Теперь, зная относительную погрешность, определяют абсолютную .

В качестве примера получим формулу для расчета погрешности плотности вещества, определяемой по формуле (П.5). Поскольку (П.5) является одночленом, то, как сказано выше, проще сначала рассчитать относительную погрешность измерения по (П.8). В (П.8) под корнем имеем сумму квадратов частных производных от логарифма измеряемой величины, поэтому сначала найдем натуральный логарифм r:


ln r = ln 4 + ln m – ln p –2 ln d – ln h ,

а потом уже воспользуемся формулой (П.8) и получим, что

Как видно, в (П.9) используются средние значения прямо измеряемых величин и их абсолютные погрешности, рассчитанные методом прямых измерений по (П.3). Погрешность, вносимую числом p, не учитывают, поскольку ее значение всегда можно взять с точностью, превышающей точность измерения всех других величин. Рассчитав e, находим .

Если косвенные измерения являются независимыми (условия каждого последующего эксперимента отличаются от условий предыдущего), то значения величины Y вычисляются для каждого отдельного эксперимента. Произведя n опытов, получают n значений Y i . Далее, принимая каждое из значений Y i (где i – номер опыта) за результат прямого измерения, вычисляют áY ñ и DY по формулам (П.1) и (П.2) соответственно.

Окончательный результат как прямых, так и косвенных измерений должен выглядеть так:

где m – показатель степени, u – единицы измерения величины Y .

ПОГРЕШНОСТИ ИЗМЕРЕНИЙ ФИЗИЧЕСКИХ ВЕЛИЧИН И

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Измерением называют нахождение значений физических величин опытным путем с помощью специальных технических средств. Измерения бывают прямые и косвенные. При прямом измерении искомое значение физической величины находят непосредственно с помощью измерительных приборов (например, измерение размеров тел с помощью штангенциркуля). Косвенным называют измерение, при котором искомое значение физической величины находят на основании известной функциональной зависимости между измеряемой величиной и величинами, подвергаемыми прямым измерениям. Например, при определении объема V цилиндра измеряют его диаметр D и высоту Н, а затем по формуле p D 2 /4 вычисляют его объем.

Вследствие неточности измерительных приборов и трудности учета всех побочных явлений при измерениях неизбежно возникают погрешности измерений. Погрешностью или ошибкой измерения называют отклонение результата измерения от истинного значения измеряемой физической величины. Погрешность измерения обычно неизвестна, как неизвестно и истинное значение измеряемой величины. Поэтому задача элементарной обработки результатов измерений заключается в установлении интервала, внутри которого с заданной вероятностью находится истинное значение измеряемой физической величины.

Классификация погрешностей измерений

Погрешности разделяют на три вида:

1) грубые или промахи,

2) систематические,

3) случайные .

Грубые погрешности - это ошибочные измерения, возникающие в результате небрежности отсчета по прибору, неразборчивости записи показаний. Например, запись результата 26,5 вместо 2,65; отсчет по шкале 18 вместо 13 и т.д. При обнаружении грубой ошибки результат данного измерения следует сразу отбросить, а само измерение повторить.

Систематические погрешности - ошибки, которые при повторных измерениях остаются постоянными или изменяются по определенному закону. Эти погрешности могут быть обусловлены неправильным выбором метода измерения, несовершенством или неисправностью приборов (например, измерения с помощью прибора, у которого смещен нуль). Для того, чтобы максимально исключить систематические погрешности, следует всегда тщательно анализировать метод измерений, сверять приборы с эталонами. В дальнейшем будем считать, что все систематические погрешности устранены, кроме тех, которые вызваны неточностью изготовления приборов и ошибкой отсчета. Эту погрешность будем называть аппаратурной.

Случайные погрешности - это ошибки, причина которых заранее не может быть учтена. Случайные погрешности зависят от несовершенства наших органов чувств, от непрерывного действия изменяющихся внешних условий (изменение температуры, давления, влажности, вибрация воздуха и т.д.). Случайные погрешности являются неустранимыми, они неизбежно присутствуют во всех измерениях, но их можно оценить, применяя методы теории вероятностей.

Обработка результатов прямых измерений

Пусть в результате прямых измерений физической величины получен ряд ее значений:

x 1 , x 2 , ... x n .

Зная этот ряд чисел, нужно указать значение, наиболее близкое к истинному значению измеряемой величины, и найти величину случайной погрешности. Эту задачу решают на основе теории вероятностей, подробное изложение которой выходит за рамки нашего курса.

Наиболее вероятным значением измеряемой физической величины (близким к истинному) считают среднее арифметическое

. (1)

Здесь x i – результат i–го измерения; n – число измерений. Случайная ошибка измерения может быть оценена величиной абсолютной погрешности D x, которую вычисляют по формуле

, (2)

где t(a ,n) – коэффициент Стьюдента, зависящий от числа измерений n и доверительной вероятности a . Значение доверительной вероятности a задает сам экспериментатор.

Вероятностью случайного события называется отношение числа случаев, благоприятного для данного события, к общему числу равновозможных случаев. Вероятность достоверного события равна 1, а невозможного - 0.

Значение коэффициента Стьюдента, соответствующее заданной доверительной вероятности a и определенному числу измерений n, находят по табл. 1.

Таблица 1

Число

измерений n

Доверительная вероятность a

0,95

0,98

1,38

12,7

31,8

1,06

0,98

0,94

0,92

0,90

0,90

0,90

0,88

0,84

Из табл. 1 видно, что величина коэффициента Стьюдента и случайная погрешность измерения тем меньше, чем больше n и меньше a . Практически выбирают a =0,95. Однако простое увеличение числа измерений не может свести общую погрешность к нулю, так как любой измерительный прибор дает погрешность.

Поясним смысл терминов абсолютная погрешность D x и доверительная вероятность a , используя числовую ось. Пусть среднее значение измеряемой величины (рис. 1), а вычисленная абсолютная погрешность D x. Отложим D x от справа и слева. Полученный числовой интервал от (- D x) до (+ D x) называется доверительным интервалом . Внутри этого доверительного интервала находится истинное значение измеряемой величины x.

Рис.1

Если измерения той же величины повторить теми же приборами в тех же условиях, то истинное значение измеряемой величины x ист попадет в этот же доверительный интервал, но попадание будет не достоверным, а с вероятностью a .

Вычислив величину абсолютной погрешности D x по формуле (2), истинное значение x измеряемой физической величины можно записать в виде x= ±D x.

Для оценки точности измерения физической величины подсчитывают относительную погрешность , которую обычно выражают в процентах,

. (3)

Таким образом, при обработке результатов прямых измерений необходимо проделать следующее:

1. Провести измерения n раз.

2. Вычислить среднее арифметическое значение по формуле (1).

3. Задать доверительную вероятность a (обычно берут a =0.95).

4. По таблице 1 найти коэффициент Стьюдента, соответствующий заданной доверительной вероятности a и числу измерений n.

5. Вычислить абсолютную погрешность по формуле (2) и сравнить ее с аппаратурной. Для дальнейших вычислений взять ту из них, которая больше.

6. По формуле (3) вычислить относительную ошибку e .

7. Записать окончательный результат

x= ±D x. с указанием относительной погрешности e и доверительной вероятности a .

Обработка результатов косвенных измерений

Пусть искомая физическая величина y связана с другими величинами x 1 , x 2 , ... x k некоторой функциональной зависимостью

Y=f(x 1 , x 2 , ... x k) (4)

Среди величин x 1 , x 2 , ... x k имеются величины, полученные при прямых измерениях, и табличные данные. Требуется определить абсолютную D y и относительную e погрешности величины y.

В большинстве случаев проще сначала вычислить относительную погрешность, а затем – абсолютную. Из теории вероятностей относительная погрешность косвенного измерения

. (5)

Здесь , где - частная производная функции по переменной x i, при вычислении которой все величины, кроме x i , считаются постоянными; D x i – абсолютная погрешность величины x i . Если x i получена в результате прямых измерений, то ее среднее значение и абсолютную погрешность D x вычисляют по формулам (1) и (2). Для всех измеренных величин x i задается одинаковая доверительная вероятность a . Если какие-либо из слагаемых, возводимых в квадрат, в выражении (5) меньше на порядок (в 10 раз) других слагаемых, то ими можно пренебречь. Это нужно учитывать при выборе табличных величин ( p , g и др.), входящих в формулу относительной погрешности. Их значение надо выбрать такими, чтобы их относительная погрешность была на порядок меньше наибольшей относительной погрешности.

Запишем конечный результат:

y= ±D y.

Здесь – среднее значение косвенного измерения, полученное по формуле (4) при подстановке в нее средних величин x i ; D y= e .

Обычно в реальных измерениях присутствуют и случайные и систематические (аппаратурные) погрешности. Если вычисленная случайная погрешность прямых измерений равна нулю или меньше аппаратурной в два и большее число раз, то при вычислении погрешности косвенных измерений в расчет должна приниматься аппаратурная погрешность. Если эти погрешности отличаются меньше, чем в два раза, то абсолютная погрешность вычисляется по формуле

.

Рассмотрим пример. Пусть необходимо вычислить объем цилиндра:

. (6)

Здесь D – диаметр цилиндра, H – его высота, измеренная штангенциркулем с ценой деления 0.1 мм. В результате многократных измерений найдем средние значения =10.0 мм и =40.0 мм. Относительную погрешность косвенного измерения объема цилиндра определяем по формуле

, (7)

где D D и D H – абсолютные ошибки прямых измерений диаметра и высоты. Их величины рассчитываем по формуле (2): D D=0.01 мм; D H=0.13 мм. Сравним вычисленные ошибки с аппаратурной, равной цене деления штангенциркуля. D D<0.1, поэтому в формуле (7) подставим вместо D D не 0.01 мм, а 0.1 мм.

Значение p нужно выбрать таким, чтобы относительной ошибкой Dp / p в формуле (7) можно было пренебречь. Из анализа измеренных величин и вычисленных абсолютных ошибок D D и D H видно, что наибольший вклад в относительную ошибку измерения объема вносит ошибка измерения высоты. Вычисление относительной ошибки высоты дает e H =0.01. Следовательно, значение p нужно взять 3.14. В этом случае Dp / p » 0.001 (Dp =3.142-3.14=0.002).

В абсолютной погрешности оставляют одну значащую цифру.

Примечания.

1. Если измерения производят один раз или результаты многократных измерений одинаковы, то за абсолютную погрешность измерений нужно взять аппаратурную погрешность, которая для большинства используемых приборов равна цене деления прибора (более подробно об аппаратурной погрешности см. в разделе “Измерительные приборы”).

2. Если табличные или экспериментальные данные приводятся без указания погрешности, то абсолютную погрешность таких чисел принимают равной половине порядка последней значащей цифры.

Действия с приближенными числами

Вопрос о различной точности вычисления очень важен, так как завышение точности вычисления приводит к большому объему ненужной работы. Студенты часто вычисляют искомую величину с точностью до пяти и более значащих цифр. Следует понимать, что эта точность излишняя. Нет никакого смысла вести вычисления дальше того предела точности, который обеспечивается точностью определения непосредственно измерявшихся величин. Проведя обработку измерений, часто не подсчитывают ошибки отдельных результатов и судят об ошибке приближенного значения величины, указывая количество верных значащих цифр в этом числе.

Значащими цифрами приближенного числа называются все цифры, кроме нуля, а также нуль в двух случаях:

1) когда он стоит между значащими цифрами (например, в числе 1071 – четыре значащих цифры);

2) когда он стоит в конце числа и когда известно, что единица соответствующего разряда в данном числе не имеется. Пример. В числе 5,20 три значащих цифры, и это означает, что при измерении мы учитывали не только единицы, но и десятые, и сотые, а в числе 5,2 – только две значащих цифры, и это значит, что мы учитывали только целые и десятые.

Приближенные вычисления следует производить с соблюдением следующих правил.

1. При сложении и вычитании в результате сохраняют столько десятичных знаков, сколько их содержится в числе с наименьшим количеством десятичных знаков. Например: 0,8934+3,24+1,188=5,3214 » 5,32. Сумму следует округлить до сотых долей, т.е. принять равной 5,32.

2. При умножении и делении в результате сохраняют столько значащих цифр, сколько их имеет приближенное число с наименьшим количеством значащих цифр. Например, необходимо перемножить 8,632 ´ 2,8 ´ 3,53. Вместо этого выражения следует вычислять

8,6 ´ 2,8 ´ 3,5 » 81.

При вычислении промежуточных результатов сохраняют на одну цифру больше, чем рекомендуют правила (так называемая запасная цифра). В окончательном результате запасная цифра отбрасывается. Для уточнения значения последней значащей цифры результата нужно вычислить за ней цифру. Если она окажется меньше пяти, ее следует просто отбросить, а если пять или больше пяти, то, отбросив ее, следует предыдущую цифру увеличить на единицу. Обычно в абсолютной ошибке оставляют одну значащую цифру, а измеренную величину округляют до того разряда, в котором находится значащая цифра абсолютной ошибки.

3. Результат расчета значений функций x n , , lg(x ) некоторого приближенного числа x должен содержать столько значащих цифр, сколько их имеется в числе x . Например: .

Построение графиков

Результаты, полученные в ходе выполнения лабораторной работы, часто важно и необходимо представить графической зависимостью. Для того, чтобы построить график, нужно на основании проделанных измерений составить таблицу, в которой каждому значению одной из величин соответствует определенное значение другой.

Графики выполняют на миллиметровой бумаге. При построении графика значения независимой переменной следует откладывать на оси абсцисс, а значения функции – на оси ординат. Около каждой оси нужно написать обозначение изображаемой величины и указать, в каких единицах она измеряется (рис. 2).

Рис.2

Для правильного построения графика важным является выбор масштаба: кривая занимает весь лист, и размеры графика по длине и высоте получаются приблизительно одинаковыми. Масштаб должен быть простым. Проще всего, если единица измеренной величины (0,1;10;100 и т.д.) соответствует 1, 2 или 5 см. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями откладываемых величин (рис. 2).

Каждое полученное экспериментальное значение наносится на график достаточно заметным образом: точкой, крестиком и т.д.

Погрешности указывают для измеряемых величин в виде отрезков длиной в доверительный интервал, в центре которых расположены экспериментальные точки. Так как указание погрешностей загромождает график, то делается это лишь тогда, когда информация о погрешностях действительно нужна: при построении кривой по экспериментальным точкам, при определении ошибок с помощью графика, при сравнении экспериментальных данных с теоретической кривой (рисунок 2). Часто достаточно указать погрешность для одной или нескольких точек.

Через экспериментальные точки необходимо проводить плавную кривую. Нередко экспериментальные точки соединяют простой ломаной линией. Тем самым как бы указывается, что величины каким-то скачкообразным образом зависят друг от друга. А это является маловероятным. Кривая должна быть плавной и может проходить не через отмеченные точки, а близко к ним так, чтобы эти точки находились по обе стороны кривой на одинаковом от нее расстоянии. Если какая-либо точка сильно выпадает из графика, то это измерение следует повторить. Поэтому желательно строить график непосредственно во время опыта. Тогда график может служить для контроля и улучшения наблюдений.

ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И УЧЕТ ИХ ПОГРЕШНОСТЕЙ

Для прямых измерений физических величин применяют измерительные приборы. Любые измерительные приборы не дают истинного значения измеряемой величины. Это связано, во-первых, с тем, что невозможно точно отсчитать по шкале прибора измеряемую величину, во-вторых, с неточностью изготовления измерительных приборов. Для учета первого фактора вводится погрешность отсчета Δx o , для второго - допускаемая погрешность Δx д . Сумма этих погрешностей образует аппаратурную или абсолютную погрешность прибора Δx :

.

Допускаемую погрешность нормируют государственными стандартами и указывают в паспорте или описании прибора.

Погрешность отсчета обычно берут равной половине цены деления прибора, но для некоторых приборов (секундомер, барометр-анероид) - равной цене деления прибора (так как положение стрелки этих приборов изменяется скачками на одно деление) и даже нескольким делениям шкалы, если условия опыта не позволяют уверенно отсчитать до одного деления (например, при толстом указателе или плохом освещении). Таким образом, погрешность отсчета устанавливает сам экспериментатор, реально отражая условия конкретного опыта.

Если допускаемая погрешность значительно меньше ошибки отсчета, то ее можно не учитывать. Обычно абсолютная погрешность прибора берется равной цене деления шкалы прибора.

Измерительные линейки обычно имеют миллиметровые деления. Для измерения рекомендуется применять стальные или чертежные линейки со скосом. Допускаемая погрешность таких линеек составляет 0,1 мм и ее можно не учитывать, так как она значительно меньше погрешности отсчета, равной ± 0,5 мм. Допускаемая погрешность деревянных и пластмассовых линеек ± 1 мм.

Допускаемая погрешность измерения микрометра зависит от верхнего предела измерения и может составлять ± (3–4) мкм (для микрометров с диапазоном измерения 0–25 мм). За погрешность отсчета принимают половину цены деления. Таким образом, абсолютную погрешность микрометра можно брать равно цене деления, т.е. 0,01 мм.

При взвешивании допускаемая погрешность технических весов зависит от нагрузки и составляет при нагрузке от 20 до 200 г – 50 мг, при нагрузке меньше 20 г – 25 мг.

Погрешность цифровых приборов определяется по классу точности.